
The importance of phase response in the audio chain has been
brought to greater focus recently by equipment claims of phase
coherency, (the output signal has the same phase relationships
as the input signal). It is not particularly obvious that two different
frequency components of a signal can go into a device at
precisely the same time and emerge at different times, but it is
extremely common. All audio components distort the phase of
the signal to some degree-even air alters the time alignment of a
signal, but the biggest offenders are loudspeakers and their
crossover networks. Phase shifts in the audio signal destroy the
wave shape of the important attack characteristics of many
instruments and hamper our ability to perceive the localization of
the image,smearing the apparent source. They can change the
steady state waveforms of vocal sounds so that the singer
seems to be ten feet wide.

Historically, the phase integrity of the audio signal has been
considered much less important than amplitude and
harmonic/intermodulation distortions, but as more of those
problems are solved and the quality of reproduction improves,
phase distortion stands out in greater relief. The question of the
audibility of these distortions has become the object of heated
discussions regarding the perceivability of absolute phase,
frequency dependent phase shifts, and the rate of phase shift.
Nonetheless we know that the ear is sensitive to phase and uses
phase cues to help determine directionality. In the belief that
proper attention to phase does produce better sound, I will
discuss the design of crossover networks which ever minimum
phase distortion.

WHY USE CROSSOVERS?

A necessary evil, the crossover network exists solely to
ameliorate the inability of most loudspeaker drivers to cover the
full audio range. Treated as a mass controlled piston working into
an acoustic load, the typical cone loudspeaker derives the
flatness of its response from the cancellation of two opposing

effects-its excursion (which decreases as the square of the
frequency), multiplied by the resistance of the acoustic load
(which increases as the square of the frequency).

Figure 1 shows this relationship on normalized logarithmic
scales. The two functions cancel each other to create a flat
acoustic output between the roll off points. At some high
frequency (where the acoustic wavelength is less than the
circumference of the cone) the acoustic resistance levels off to a
constant value. Since the cone's excursion decreases by the
square of the frequency, the resulting frequency response curve
(excursion times acoustic resistance) rolls off at 12dB/octave. At
the low frequency resonance of the driver, where to excursion is
dominated by the compliance of the suspension instead of the
mass of the cone, another rolloff appears, also at 12dB/octave.
Generally cone drivers don't work well over more than about a 10
to 1 frequency range, and to cover the audio spectrum from
20Hz to 20kHz you might need three different drivers, each
designed for a specific range-20 to 200Hz for the woofer, 200 to
2000Hz for a midrange,and 2 to 20kHz for the tweeter. You could
send a full range signal to all the drivers in parallel, but would
discover quickly that they fail to reproduce outside their range.
As they struggle to do so, severe distortion and possible damage
may occur. The crossover network divides the sound among the
drivers. Ideally when the drivers reproduce the signals sent to
them, their outputs blend together to form an acoustic copy of the
original signal as if the division had never taken place.

SQUARE WAVES SHOW PHASE CHANGES. 

One of the reasons the square wave is a useful test signal is that
its shape is extremely sensitive to any variation in either
amplitude or phase. It consists of a rich array of harmonics, and
any alteration of their amplitude and phase deforms that
squareness. I suppose the perfect high fidelity system would
have to pass a square wave test, where a square wave would be
encoded onto the appropriate medium and the resulting

playback would create an acoustic square wave in
the vicinity of the listener's ear. Most parts of the
audio chain pass square waves quite well when
designed carefully. Loudspeakers have the
greatest problem, and although some present
good square waves at particular frequencies and
angles, to date I have not seen a loudspeaker
which passes a general square wave test.

When we send a square wave into a loudspeaker
system and observe the resulting image on an
oscilloscope screen, we see little resemblance to a
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square wave except the original periodicity . The loudspeaker
drivers, the room, and the microphone have all degraded the
waveform. If we could eliminate all of these sources of distortion,
we still might find our square wave grossly modified, the phase
seriously distorted by the crossover network.

CROSSOVERS ALTER PHASE.

All filters, active or passive, alter the phase. However, with some
types of filters, when the low pass and high pass outputs are
mixed back together, the original phase and amplitude relations
are re-created precisely. Such crossover filters are phase
coherent and their high and low pass outputs are phase
complementary. To evaluate the coherence of a given pair of
filters, we measure the electrical sum of their outputs, then
mathematically add them; examining the result for amplitude and
phase distortion. On some filters we find that inverting the output
of the high or low pass filter results in more accurate total
amplitude or phase response, and we will examine those
possibilities also.

Figure 2 shows the results of such a test with some reasonably
common crossover network types. These particular circuits are
designed for biamplified systems, with low source impedance
and high load impedance. Note the use of phase inverting
buffers to invert the in some cases. (Of course this could be
achieved more easily in a real system by inverting the polarity of
the loudspeaker terminals.)

The topologies in Fig. 3 are for power, rather than preamp levels,
using coils. As the textbooks are fond of saying, calculation of
the values is left as an exercise to the reader. The 6dB/octave
and the inverted 12 and 18dB/octave examples yield sums which
are quite fiat, and remarkably, we see that the 12 and
18dB/octave cases both yield identical amplitude and phase
results. Of all these filters only one, the lowly 6dB/octave
crossover has both accurate amplitude and phase response
when the outputs are reassembled.



SIMPLE BUT EFFECTIVE.

In applications where the drivers have wide bandwidth and can
tolerate the low rolloff rate, the6dB/octave crossover can give
excellent results, particularly with planar drivers, such as
electrostatic systems and Magnepans.

The circuit of Fig. 4 has given me excellent results with the
Tympani 1D's and MG 2A's and serves as a good example of
how well simple inexpensive approaches work. I have not had
the opportunity to try it with their newer SMG's, but I expect
similar improvements over the stock systems. Using both
capacitors and coils, it presents a flat input impedance of
10kohm or higher.

Those who wish to dispense with coils and whose preamp can
drive a 5kohm load might try the equivalent circuit of Fig. 5,
which gives the same results with a few decibels loss of gain.
The circuit of Fig. 6 (which uses active impedance buffers to give
the circuit a very high input impedance and a very low output
impedance) does not have this loss. Various types of buffers are

possible. IC buffers (such as the LM 302 or LM 310) op amps
(whose output is connected to the inverting input), and simple
one-device emitter/source/cathode voltage followers without
negative feedback are suitable. The circuits of Figs. 4-6 all pass
our square wave test and all have6dB/octave slopes.

SUMMING FOR FLAT RESPONSE.

Even more interesting is the technique illustrated in Fig. 7. An
active circuit assembles a phase complementary output from the
difference between the input and the output of a single filter. This
ensures that the sum of the two outputs will be perfectly flat in
amplitude and phase. To be effective, the filter should exhibit
unity gain in its passband, or the rolloff characteristic will have a
shelf hike a conventional tone controll, but otherwise it can be
any type of filter.

This approach allows the use of higher order filter slopes in a
phase coherent crossover as shown in Fig. 8, where we note
some interesting phenomena. The precise complement of a
maximally flat 12or 18dB/octave filter has a peak which
increases with the slope and Q of the filter, and it always exhibits
a 6dB/octave slope. One of these minor drawbacks, the peak,



can be reduced by lowering the Q of the filter as in the examples
of Fig. 9 where the less than maximally flat characteristics are
those of Fig. 2.

Figure 10 shows us that the effect is similar but reversed if you
use a low pass filter in this configuration instead of a high pass.

Unfortunately, I don't know of a way the
complementary output can be made to roll
off at a slope greater than6dB/octave, and
you must choose whether it will be the low
pass or the high pass based on
information about the drivers. Most of the
time you should assign the higher slope to
the tweeter, since it generally needs more
protection from out of band signals.

In such filters, the resistances in the
differencing amplifier must be very much
greater than the output impedance of the
filter. Figure 11 shows what happens when
they are only 5 times greater: the rolloff
curve shelves at about -20dB.This is not a
very desirable characteristic, but often it is
not very practical to place multimegohm
resistances in the differencing circuit
because of the noise and the input bias
currents of the op amp. Figure12 shows
an easy solution to this potential problem.
Buffering the output of the filter gives it a
near-zero output impedance, and
completely eliminates this effect.

TOTAL SYSTEM RESPONSE.

So far we have considered only the phase
and amplitude performance of the
crossover network and how easily you can
achieve phase coherency in such a

device. However Mother Nature is not going to let us off so
lightly. These networks drive loudspeaker elements and while we
can make filters perfect, the acoustic sum includes the phase
and amplitude distortions of the drivers. Robert Bullock's
interesting work on the sensitivity of conventional crossover
networks to the imperfections of drivers inspired me to examine

phase coherent filters for the same
phenomena.

The computer model for two different
tweeters and two different woofers shown
in Fig.13 is consistent with our previous
analysis of the mass controlled piston.
One case allows for a one octave margin
between the drivers' rolloffs and the
crossover point (500Hz for the tweeter,
2000Hz for the woofer, and 1000Hz
crossover), and the second case allows for
a two octave margin. The actual acoustical
output is the sum of the crossover and
driver characteristics. I tried various
combinations in the computer model and
found (Fig. 14) that severe amplitude and
phase distortion occur in all cases.

Does this mean that phase coherent
crossovers are useless? Not necessarily.



Examples of these filters have been known to work well,
particularly with planar drivers, which are not precisely modeled
as pistons, and do not exhibit the severe amplitude anomalies
we might expect. However, note that while the filter may be
advertised honestly as phase coherent this does not guarantee
the system will be also, and I recommend carefully auditioning
such a crossover with the intended loudspeaker. The point is to
make the final acoustical response phase linear. The crossovers
must be designed to compensate for the drivers' performance if
the final output is to be flat.

Much remains to be done in this area. The simulations can be
performed using some of the excellent linear circuit analysis
programs commercially available for the Apple, Hewlett-
Packard, and other microcomputers, and I would be interested in
any results readers may obtain.




